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A study of strong gravity theory is carried out in five-dimensional Kaluza-Klein 
space-time. A relation between the cosmological constant and the radius pa- 
rameter of the fifth dimension is obtained. The effect of the extra dimension is 
seen through the generation of masses simulating a Regge-like mass spectrum. 
It is found that the confinement mechanism is built into the strong gravity 
formalism. We also discuss the trapping of quarks in the 5D background. 

1. INTRODUCTION 

There have been some attempts to understand the hadronic interaction 
based on a space-time description. In the geometrodynamics of  Preparata 
(Preparata and Craigie, 1976) hadron dynamics follows from space-time 
geometry. There is also a model (Schrempp and Schrempp, 1977) of a 
hadron-hadron  scattering where hadronic diffraction is considered as a 
tunneling phenomenon. The geometry of the hadron in the model turns out 
to be identical to the one found in the color confinement scheme. In the 
most remarkable approach in this direction (Wess and Zumino, 1970; Salam 
et al., 1971; Sivaram and Sinha, 1974, 1975, 1979; Biswas et al., 1983), 
called the strong gravity formalism, a strongly interacting spin-2 § meson 
lying on a pomeron trajectory is described by an equation similar to the 
Einstein field equation with f ~  (2 + meson mediating field) replacing the 
graviton field g~V. There is f - g  mixing to give mass to the f-quanta.  

In this paper we extend this two-tensor theory of gravitation to higher 
dimensions, particularly restricting ourselves to five-dimensional Kaluza- 
Klein space. All the models of  strong gravity theory so far constructed are 
built on four-dimensional Riemannian space-time with an Einstein-Hilbert 
type of action; the cosmological constant is added to generate the Ar2-type 
potential of quantum chromodynamics. In supergravity theories extra 
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dimensions have been introduced to incorporate internal symmetry and 
have been treated at par with ordinary four dimensions, but the strong 
gravity theory in Kaluza-Klein space has not been exploited so far. When 
normal gravitation is seen through Kaluza-Klein space, we get a unification 
of electromagnetism and gravitation. The radius of  the extra dimensional 
compact space in this type of theory turns out to be of the order of the 
Planck length 10 -33 cm, resulting in a mass scale of  1019 GeV. Before going 
on to describe the salient features o f f - g  theory in 5D space, we note that 
the f - g  theory in four space-time dimensions cannot explain the origin of  
the cosmological constant and also is unable to give a kinematic theory of  
mass. The cosmological constant is necessary to explain the confining aspects 
of  the solitonic solutions of  strong gravity theory, whereas a kinematic 
theory of mass is needed to explain the origin of  the Regge states of hadronic 
physics. Moreover, the mechanism of mass generation remains unclear in 
all these four-dimensional f - g  theories. In our attempt, we find that (i) the 
f - g  theory in five-dimensional Kaluza-Klein space constructed from an 
Einstein-type action without cosmological constant is equivalent to the f - g  

theory in four dimensions with a cosmological constant, (ii) the massive 
modes of the theory generate the cosmological constant, (iii) the extra 
dimensional compact space generates masses characteristic of strong interac- 
tion provided we fix the radius of the compact circle to be of the order of 
1 F, (iv) Regge states are simulated, signaling the confining aspects of  the 
theory, and (v) a fluctuation of the radius of  the extra dimensional compact 
circle generates mass at the scale of hadronic physics, namely - 1  GeV. 

In Section 2 we describe the f - g  theory in five-dimensional Kaluza- 
Klein space; Section 3 deals with the derivation of the cosmological constant. 
Section 4 deals with the mass scales of the theory, elucidating its connection 
with the Regge states of hadronic physics. Section 5 deals with the trapping 
of quarks and gluons in a given strong gravitational background, and in 
Section 6 we report some of our results on the mass generation in a 
five-dimensional space-time. We end with a concluding section. 

2. f - g  THEORY IN FIVE DIMENSIONS 

We take, as in the original Kaluza-Klein space, the metric ground state 
to be a product  space M 4 x S l, where S 1 is a circle characterized by a linear 
variable ranging from 0 to 2~rR~, with R~ the radius of the S 1 circle. The 
ground state is now described by 

d s  2 = d t  2 - d x  2 - d y  e - d z  2 - dfb 2 (1) 

Now we assume that in the vicinity of  the hadron, due to strong interaction, 
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the metric is fAB, where 

ds2 = faB dx A dx B (2) 

and A, B = 0, 1, 2, 3, 5. The Einstein-Hilbert action of the five-dimensional 
f - g  theory is now written as 

I ' f  S - - 116~'GN dSx ( -g ) l / 2 R(g )  ---161rG~ dSx ( - f e )~ /2R( f )  (3) 

where R(g)  and R ( f )  are Ricci scalars constructed from gAB and fAB, 
respectively. If  we consider G~ >> GN, we have the dominant term 

1 f S -  16 ~ 'G-~  
( - f )  l / 2R( f )  

As the extradimensional space is compact, it is possible to expandfAs(X ~, (a) 
into Fourier series as 

+cr 

fAB(X ~, c~)= Z f~A~(x~) ei'~S/R~ (4) 

Under suitable gauge, each component f~A~ will satisfy 

o r  

where m, is given by 

02 ~/ 2 19 --  2 ~  r (n )  
7"-7 -t- m ,~ l J A B = O 
oxi / 

n 2 
2 m. (5) 

R ,  

In usual Kaluza-Klein theory R,-~ 10  -33 cm, resulting in a mass scale of 
1019 GeV. As experiments are conducted far below this energy range, one 
takes an average over the fifth dimension and works with only the zeroth 
mode (n =0)  of the theory. But in our approach the mass scale is - 1  GeV, 
corresponding to Rs - -  10  -14  cm, and we have to consider all the modes ot' 
the theory. Let us first see the effect of  the zeroth mode, with 

+ A A,, 

= \ - a "  I~ l + a a A a ]  

(6) 

(7) 
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We have omi t ted  the superscr ip t  n = 0 on the metr ic  fas. With this fo rm o f  
fAn, we get 

ds 2 = f ~  dx ~ dx ~ + (dxS+ A~ dx ~)2 (8) 

det(fAB) = d e t ( f ~ )  --=f(4) (9) 

To  obta in  the Einstein-l ike field equat ion  o f  s trong gravity,  it is required 
to calculate the Ricci scalar  R(S)(f) in five d imensions .  It can be shown that  

R (5) /~ (4) -I- ! iE? w"~ (10) 

where  

F,.,, =O,A,,-a, ,A# (11) 

and  R (4) is a Ricci scalar  evaluated with the metr ic  f ~ .  As F~,; and  A,, do 
not  depend  on an internal  coordinate ,  we get f rom (3) af ter  integrat ing over  
X 5 =  

S: 167raf d4x [-f(4)]l/2(R(4)'+�88 (12) 

where  Gy = Gs/2"rrR~ is now identified with the strong gravi ta t ional  constant ,  
i.e., Gy = 1038gN. To fix R~ in our  approach ,  we consider  a scalar  field with 
act ion 

S 6 = f dSx [--f(5)]l/2(OadP)(Ot~dP+)faB (13) 
3 

Again assuming  

we get 

1 
dp = (27rR,),/2 ~ dp(")(x ~*) e'"x'/Rs 

Oa ~) OB~t  f AB = "[- i -~  A~. cb + la~l 2 

so that  the Four ier  c o m p o n e n t  of  �9 behaves  as a particle of  charge q and 
mass  M , ,  where  

q=(16,rrGs) 1/2 n M , , -  n (14) 
R~ ' R~ 

Thus  

e 2 4hG~ 
O[ -- - -  

4rrhc 3 2 c R~ 

2 ( h G s ~  1/2 - 2 ( ~ G N ~  1/2 1019 
i s  = - ~  ~k C3 ) ~ 1/2 ~k C 3 ) X 

= 3.7 • 10 -13 cm 

(15) 
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Thus, we see that even in the hadronic world, a Kaluza-Klein type descrip- 
tion will work, with the result that the radius of the extra dimensional 
compact circle coincides with the dimension of the hadron. This peculiar 
property off-gravi ty  theory in five dimensions is the root that will generate 
the confining properties in the theory. A straightforward approach is to 
construct solitonic solutions in Kaluza-Klein theories. By solitons we mean 
nonsingular solutions of  the classical field equations which represent 
spatially localized lumps that are topologically stable. As we have discussed 
only the zeroth-order mode and hadrons are viewed from a four-dimensional 
point of view having masses -n/Rs,  we will be interested only in those 
solutions of  classical field equations where proper account of the higher 
order modes has been taken seriously. So the solitonic solutions of n = 0 
mode theory off -gravi ty  will not be much help in our approach. 

3. C O S M O L O G I C A L  CONSTANT AND N;~0  MODES 

It would be worthwhile to discuss some salient features arising out of  
equation (15). The structure of  the internal space is not clear in the Kaluza- 
Klein approach of normal gravity except that it is determined by the fine 
structure constant a and GN, the normal gravitational constant. The internal 
space manifests itself only through the massive modes -1019 GeV, which 
is extremely large, so that we take only an average over the fifth dimension. 
As the strong interaction is the strongest of all the known four interactions 
and the radius for the compact circle - 1 0  -13 cm is the largest, the internal 
space still remains hidden within observed particles and it is a surprise that 
it is of  the order of hadronic dimensions. So it is quite possible to have a 
theory where the radius of the S 1 circle is a free parameter such that 

GN Gi 
- -  = ( 1 6 )  
R~ R~ 

where Gi and Ri are, respectively, the coupling constant and radius of the 
compact space corresponding to the new theory; GN is the normal gravita- 
tional constant and Rp is the Planck length (=10 -33 cm) of normal gravity. 
Equation (16) will make the fine structure constant to be equal to the present 
value - 1 / 1 3 7  observed in four dimensions. The restrictions (16) and (14) 
are inherent in all higher dimensional theories and are due to the fact that 
the action of the gauge fields is derived from the Einstein action in the 
higher dimensional space-time, in which only the gravitational constant 
plays the role of a dimensional constant. If one has some reservation 
regarding setting the scale Rs through (16) and (14), it is better to consider 
a theory in which R~ is a free parameter. We adopt the induced gravity 
formalism (Naka and Itoi, 1983) in which the theory of gravity is defined 
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as a quantum fluctuation of fundamental matter fields. We start with the 
action (also see Sivaram, 1987) 

f d S x l f l  1/2 , ,~ , , S �9 ~(f  0~r 0~r - m 2 r 1 6 2  ') (17) 

where fi, P=0 ,  1, 2, 3, 5; f ~ f ~ z =  8~; and f =  det(fn;). We assume that: 
(i) The scalar fields &~ satisfy the periodic boundary condition with 

respect to internal coordinate x s such that 

&~(xS +2~rRs) = &~(x s) (18) 

where R, is a constant having the dimension of length. 
(ii) The auxiliary fields fr can be decomposed as 

[fz~,-(eR,)2A~A,, [ (eRs)A,,)'~ 
= . . . .  - ( e k ; 3 - A ;  . . . . .  T . . . .  - - f - - - - ]  ( 1 9 )  

where f.~ and A~. are functions of x" only and will be understood as the 
metric tensor of strong gravity and electromagnetic field, respectively. The 
action (17) now becomes 

S = f d Sx Ifl'/2 �89 + eR.A~ Os)& '(O~ + eR~A~ 05)~ i 

+Osq~' 0s~b i -  rn2~b'~b '] (20) 

The boundary condition (18) again allows us to write 0i(x ~', x 5 = 40 in the 
form 

1 +co  

&i(x~" xS) (2~rR.) '/2.=-~oE 4i.(x") ei'~'/R" 

where q~[. = 0~,*. Integrating over x 5, we get (20) as 

S = E dgx [ftl/2 ~ .., , �9 i �9 ~ [ f  ( 0 . r  + te,~A.ch_,,) 
n = - o o  

i - i m.r  (21) 

where e. en/ Rs, 2 2 2 = rn. = m2+ n /R~, and f =  det(f.~). The effective action 
for f.~ and A.  is now obtained as 

/ i/-~. \ 
We"= i N T r  Z l~ [2--~ z . 

where 

l~.(x) 1 =[-~f]5 (0. + ie,.A u. )Ifll/2f~'(o,, + ie.A.,)+ m~ 
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/~ is a normalization constant having dimension of  mass, and N is the 
number of  scalar fields. 

The effective action now turns out to be 

Weff= d4x If l  1/2 ~ 0 -  el R 2 2 6 16 c2f "f F, pF, o-+.' '  (22) 

go=i N_~trIp4[_log { P~ ~ + 3 ] }  
lo'n" t L \-27ritz 2] 

Cl - -  3271. 2 tr P~ - l og  
k \zTrt/z I 

Here the trace runs over the eigenvalues of Ps (=0, +I/R,, +2/Rs,...). We 
assume also that ultraviolet divergence contained in the trace part is suitably 
regularized by an internal momentum cutoff, thus making go, gl, and g2 
finite constants. 

We adjust the effective action by putting 

e2R 2 _ 
� 8 9  c2 

16~'Gs 

so that 

where 

Wen= d4xlfll/2 ~+  1 R+4F,,.F + ' ' '  (23) 
167rGs 

Uo = -(3/8"n'Gs)(8o/81) 

This completes our derivation. Thus we have generated a large cosmological 
constant arising out of massive modes --n/R,, fixing Rs to be of the order 
of  10 -13 cm, the characteristic length of  the strong interaction. Thus, the 
use of a large cosmological constant in strong gravity finds a justification 
in our approach. This is a new result (see also Sivaram and Sinha, 1973, 
1976). 

4. MASS SCALES AND REGGE STATES 

From the above discussion it is clear that the massive states of  the 
theory are given by 

Mn = n/Rs (24) 
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where n is an integer. However, it is quite possible that there is a fluctuation 
of  internal space with time. In that case we have to take the average over 
time and the relation (24) will be modified as 

M(k) = K/Rs (25) 

where K is not necessarily an integer. It was noted by Mr (1952, p. 170) 
that a classical system with positive energy density, a given intrinsic angular 
momentum, and a given rest mass must always have a finite extension given 
by 

R, = J~ M (26) 

We have already noted that Rs = the dimension of a hadron, so that 
the striking resemblance of (25) and (26) and dimensional arguments allows 
us to identify K with the intrinsic angular momentum J and we get 

J = R,M (27) 

Thus we see that the internal space generates masses in such a way that (i) 
it simulates a peripheral behavior J=a ( s )aC~/~ ,  and (ii) it produces 
approximately the spectrum as expected from dual models. It should be 
noted that Regge theory with peripheral dominance gives rise to trajectory 
a(s) c ~-s in the s-channel description (Schrempp and Schrempp, 1977). 
So the f-gravity theory in five dimensions is able to explain the origin of 
the hadronic mass spectrum without solving an Einstein-like equation of 
strong gravity and using the soliton mass formula of  Christodoulo and 
Rufl~ni (1971). One might be skeptical of the arguments leading to (27) and 
inquire about the role of the field equations in the theory. The f-g theory 
in five dimension under dimensional reduction will lead to field equations 

R~(f)  +�89 + Af~  = 0 (28) 

The Ricci tensor R,~(f) is evaluated with the metric f ~ .  Incorporating 
internal symmetry and Yang-Mills type source terms for color field, one is 
able to generate a mass formula (Mielke, 1980) for hadrons (also see Sivaram 
and Sinha, 1977) 

M2 { +~SY+4[I(I+l)+~Y2]}2 M,-----5 = 1 +~J(J+ 1) (29) 

where the symbols have their usual meaning. M* is the Planck mass, 
1 GeV, of  strong gravity and a is the coupling of  the Yang-Mills field to 

strong gravity;/3 is fitted numerically (=}). A simple approach is to consider 
hadrons of  mass M as black holes of radius Rs = GsM, so that equation 
(25) now generates a linearly rising trajectory J = o~(s) + o t ' M  2 with o~' = G,. 
The result is quite convincing. It is well known that the existence of  a 
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linearly rising trajectory is a direct manifestation of the confining aspects 
of  hadronic constituents. As we increase energy, all resonance states lie on 
a Regge trajectory without having any ionization energy to set the con- 
stituents free (Sivaram and Sinha, 1979). 

5. TRAPPING OF QUARKS A N D  G L U O N S  

In this section we discuss the trapping of quarks and gluons in the 
given gravitational background of 5 D f - g  theory. The 5 D f - g  theory reduced 
to four dimensions is equivalent to the Einstein action with a cosmological 
constant. The field equation turns out to be 

t 
R . ~ ( f )  + s f ~ R  + A z f ~  = - T~.(&) (30) 

where 

T.~(qS) ' '~ 

is the energy-momentum tensor of  scalar quarks with 

f"~&;,~ = 0 (31) 

We assume 

f ,~  = e2a(r)'r'lt~v (32) 

and e 2a ~ 1 as y + 0, so that quarks are free at the center of  confinement 
(r = 0). After solving (30) with the form (32), we get 

e 2a(r~ = 1 - Air2~3 (33) 

Now assuming gluons as quasi-Maxwellian fields, the gluon field equations 
in the background (33) are written as (Landau and Lifshitz, 1975), p. 334) 

V . D = 0  

V . B = 0  

17 • H = OD/Ot (34) 

V X E = -OB/0 t 

where D = e2XE and B = e2XH. Thus we see that the f ~  field plays the role 
of  a medium with 

e = ix = 1 - A f r 2 / 3  (35) 

The characteristic features of  the solution of (34) are that (i) the energy of 
the gluons are quantized, E ( n ) o c ( n + 3 )  ~/2 with n =0 ,  1, 2 . . . .  , and (ii) E 
and B are confined in a region Aj!/2r << 1 and higher energy states are closer 
to the center. This signals confinement in the theory. 
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To show confinement of quarks, we take the defining equations of 
massless quarks in the gravitational field as 

(~r .  p)4, = ~o ~ x  

( ~ "  p ) x  = ~o ~ ,~ 

We solve (35) for Ay~/2r<< 1 and find, as in the color field case, that quark 
energies are spaced like harmonic oscillator-like levels and the exponential 
decrease of the radial part of  the solution of  (35) reveals that higher energy 
quark orbits are closer to the center of confinement. The conclusion is that 
the strong gravitational background provides a trap for both gluons and 
quarks. The details will be discussed in a subsequent paper. 

6. EFFECT OF EXPANDING INTERNAL SPACE 

In order to establish our claim, namely equation (25), we consider an 
internal space with expanding internal space with Robertson-Walker-type 
metric, 

ds2= dt2- R~( t) d~b 2 

= c(n)(cln 2- d4) ~) 

where 

Let 

t = f d t = f R , ( n ' ) d w '  

c(~7) = R~(t) 

c (~7) = A + B tanh pB 

with A, B, p constants. So 

c ( ~ ) = A + B  for ~7 --> +oo 

The field equation corresponding to the Lagrangian density 

~.~(x) =�89162162 - m2q52(x)] 

is 

d 2 
drl2Xk(T1)+[-~2+c(~7)m2]xk(~7) =0 

(36) 

(37) 
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where 

(~(X ) "= E aiUi(X) .-t- Cl~ U~i (x) 
i 

Uk(4~, n) = (2~') -1/2 e'~"/R~'Xk(n) 
OUt It is found that U~ # Un , where 

Uin n ) (47rO)in) - 1 /2  ei(n/R~)6-i%n rt 
,0 ~ - -oo  

U ~ ) (4,/tO)out) - 1 /2  ei(n/R,)4~-i'~ 
-0 ~ -t-oO 

COin = B ) J  

[ ~ + m 2 ( A +  "]'/2 O out = B ) J  

Defining Bogolubov coefficients a ,  and /3n as (Birrell and Davies, 1982, 
p. 59) 

in U.(~ , x ) - , *  ~r~ rr ~ 

we find that Iflnl2# 0, implying thereby that there is mass creation in such 
an expanding internal space. I f  the rate of  expansion is slow, 

1~,12oc B 2 

oz Rs A R~ 

For the hadronic regime, due to the large value of Gy, the mass generation 
will be significant. However,  when the slowness parameter  p + 0, 

13,12oc e-M,,o 

so that higher modes are inefficiently excited; here Mh = mass of a hadron. 
Thus, the internal momentum cutoff used in Section 3 is quite reasonable 
in our approach.  Further, the energy of massive states is now given by 

w 2= n2/R~+m2(A• 

With m 2 = const /R~,  we get 

w 2 = j 2 / R ~  

where j 2 =  n2+const  " (A• Equation (38) justifies our claim that the 
massive states of  the theory lie on a Regge trajectory. The details of  this 
section will be discussed elsewhere. 
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7. C O N C L U S I O N  

In  n o r m a l  g rav i ta t ion  the  cosmolog ica l  cons tan t  is a p p r o x i m a t e l y  zero,  
whereas  we requi re  a large cosmolog ica l  cons tan t  A s in the  s t rong gravi ty  
formal i sm.  In  this pape r ,  we have t r ied  to dea l  with the  occur rence  o f  t h e  
large cosmolog ica l  cons tan t  s tar t ing f rom a f ive-d imens ional  K a l u z a - K l e i n  
theory .  In  all s t rong gravi ty  theor ies  the so l i ton ic  solu t ions  o f  field equat ions  
are  ident i f ied  as had rons ,  t he reby  h id ing  the dynamica l  conten t  o f  the 
conf inement  mechan i sm.  In this p a p e r  we have also t r ied  to dea l  with the  
way  the conf inement  is ach ieved  in the theory,  and  Regge states,  a direct  
man i fe s t a t ion  o f  conf inement ,  find a na tu ra l  p lace  in our  app roach .  
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